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ABSTRACT

Accurately mapped meteorological data are an essential component for hydrologic and ecological re-
search conducted at broad scales. A simple yet effective method for mapping daily weather conditions
across heterogeneous landscapes is described and assessed. Daily weather data recorded at point locations
are integrated with long-term-average climate maps to reconstruct spatially explicit estimates of daily
precipitation and temperature extrema. The method uses ordinary kriging to interpolate base station data
spatially into fields of approximately 2-km grain size. The fields are subsequently adjusted by 30-yr-average
climate maps [Parameter-Elevation Regression on Independent Slopes Model (PRISM)], which incorporate
adiabatic lapse rates, orographic effects, coastal proximity, and other environmental factors. The accuracy
assessment evaluated an interpolation-only approach and the new method by comparing predicted and
observed values from an independent validation dataset. The results of the accuracy assessment are com-
pared for a 24-yr period for California. For all three weather variables, mean absolute errors (MAE) of the
climate-imprint method were considerably smaller than those of the interpolation-only approach. MAE for
predicted daily precipitation was �2.5 mm, with a bias of �0.01. MAE for predicted daily minimum and
maximum temperatures were �1.7° and �2.0°C, respectively, with corresponding biases of �0.41° and
�0.38°C. MAE differed seasonally for all three weather variables, but the method was stable despite
variation in the number of base stations available for each day.

1. Introduction

Accurately mapped meteorological data are an es-
sential component of hydrologic and ecological re-
search conducted at broad scales (Thornton et al. 1997).
Spatially explicit maps of long-term-average climate are
becoming increasingly available (e.g., Daly et al. 1994,
1997, 2000), but many broad-scale hydrologic and eco-
logical studies require meteorological variables, such as
precipitation and temperature, to be mapped on a
daily-time-step, or even finer, temporal scale (Running
et al. 1987; Running and Coughlan 1988; Band et al.
1991; McMurtrie et al. 1992). Maps of daily weather
conditions are critically important for models of earth

surface processes and biological population dynamics
that respond directly to short-term variability in
weather rather than average climate. There are a vari-
ety of methods to map daily weather conditions; how-
ever, each has limitations for applications over broad
scales.

Geostatistical interpolation (e.g., kriging) is one ap-
proach to estimate weather conditions at unsampled
locations (Phillips et al. 1992; Goovaerts 2000), but its
application for large regions is limited by low densities
of base stations, especially where the distribution of
base stations is unrepresentative of topographic vari-
ability and geographic features (Dodson and Marks
1997; Daly et al. 2002). Models such as Mountain Cli-
mate Simulator (MTCLIM) have been developed to
provide daily values for weather variables in complex
terrain (Running et al. 1987; Hungerford et al. 1989;
Glassy and Running 1994), but assumptions of their
method can break down over large areas (�2000 km2;
Thornton et al. 1997). At the cost of considerable com-
plexity, the “Daymet” model extends MTCLIM logic to
include interpolations between multiple observations
across larger regions for mapping daily meteorological
variables (Thornton et al. 1997). Others have integrated
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long-term-average climate data to improve interpola-
tions of annual average temperatures (Willmott and
Robeson 1995), but this approach has not been pre-
sented for mapping weather conditions on a daily time
step.

This paper presents a method for mapping daily
weather conditions that integrates a network of base
station point observations with long-term-average cli-
mate maps. The method is designed to utilize readily
accessible base station data and a spatial climate
dataset [Parameter-Elevation Regression on Indepen-
dent Slopes Model (PRISM); Daly et al. 1994] that
captures the effect of variable terrain and geographic
features, such as coastal proximity and orographic pat-
terns. To evaluate the predictive accuracy of this
method, we examined the following three questions:

1) How accurately does the method predict daily
weather conditions in comparison with an interpo-
lation-only approach?

2) To what extent does the error in weather estimates
differ seasonally for each method?

3) To what degree is the magnitude of error consistent
from day to day, given a variable number of avail-
able sample points?

The accuracy assessment evaluates the straightfor-
ward interpolation-only approach and the new method
by comparing predicted values with observed values
from an independent validation dataset. The results of
the accuracy assessment are compared seasonally and
annually over a 24-yr period (1980–2003).

2. Methods

a. Meteorological and climate data

The National Oceanic and Atmospheric Administra-
tion (NOAA) National Climatic Data Center (NCDC)
provides daily weather data for a network of first-order
and cooperative weather stations in California. These
weather stations were downloaded and mapped in a
geographic information system (GIS) for California
(Fig. 1). The database contains 24 yr of daily weather
parameters (1980–2003) at 779 point locations. Any
given day of the record typically contains between 131
and 234 stations with complete data. NCDC observa-
tions may present some problematic characteristics,
such as variable time of observation, uncertainty in con-
version of snow depth to liquid precipitation, and un-
shielded gauges, and data quality varies by station and
time period. For the purposes of this study, the data
were considered to be generally reliable without addi-
tional quality control. Additional weather networks

and sources could potentially augment station density
but were not included so as to minimize complexity in
the database construction process.

Long-term-average climate maps are available for
many regions across the world. For this research, we
have used climate maps produced by PRISM (Daly et
al. 1994, 1997, 2000) (Fig. 2). PRISM uses 30 yr of cli-
mate observations from weather base stations in con-
junction with digital terrain data and other environ-
mental factors to interpolate climatic variability spa-
tially across a landscape. Grain size of each PRISM grid
cell is approximately 2 km � 2 km. The PRISM method
assumes that elevation is among the most important
factors controlling landscape patterns of temperature
and moisture, and it uses linear regression to estimate

FIG. 1. Map of 779 weather base stations with daily
observations from NOAA NCDC in California (1980–2003).
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climate variability within local topographic orienta-
tions, or facets. Other environmental factors are incor-
porated using differential regression weighting of the
base station data points. The combined weight of a sta-
tion is a function of elevation, coastal proximity, aspect,
local relief, and vertical airmass layering. PRISM cap-
tures the influence of large water bodies, complex ter-
rain, and atmospheric inversions in determining tem-
perature and moisture, including rain shadow effects.
These factors are especially important in California,
where climate varies considerably over short distances.

b. Mapping methods

1) INTERPOLATION ONLY (IO)

To produce spatially explicit maps of precipitation
and maximum and minimum temperatures, ordinary
kriging was used to interpolate the point observations
from a network of weather base stations (Fig. 3). The
software used for all interpolations was ArcInfo, ver-

sion 8.3, produced by Environmental Systems Research
Institute. We developed a script in Arc Macro Lan-
guage to automate the processing of each weather vari-
able for all days using the kriging command of the soft-
ware’s “GRID” module. Kriging and its variants
(Matheron 1971) have been frequently used to interpo-
late point measurements spatially in numerous earth
system science applications (e.g., Bonham-Carter 1994;
Burrough and McDonnell 1998; Isaaks and Srivastava
1989). Kriging has also been applied extensively to the
interpolation of climate data (e.g., Dingman et al. 1988;
Hevesi et al. 1992; Phillips et al. 1992; Garen et al.
1994). Kriged estimates for a spatially distributed vari-
able at any unmonitored location are computed as a
weighted average of the known values from a surround-
ing set of sampled points. Kriging weights are derived
from a statistical model of spatial correlation expressed
as semivariograms that characterize the spatial depen-
dency and structure in the data (Fig. 4). Weights are
derived such that the kriged surface minimizes the error

FIG. 2. Climate variables for Mar from PRISM: 30 yr (1961–90) monthly mean of (a) total precipitation, (b) maximum
temperatures, and (c) minimum temperatures.
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variance and the estimator is unbiased at any un-
sampled location within the spatial domain. Kriging as-
sumes that the observations are realizations of a sta-
tionary stochastic process and that predictions have
standard errors and probabilities associated with them.
Although the fit of the interpolation is limited by the fit
of the estimated semivariogram to the actual semivari-
ances from sampled point data, it is generally held that
spatial predictions are robust with respect to misspeci-
fication of the semivariogram model (Cressie 1993;
Goovaerts 1997). A major strength of the method is
that measured spatial dependence in the weather pa-
rameter of interest is used to inform the prediction.

2) CLIMATE IMPRINT (CI)

For our work, the long-term (30 yr) average values
on PRISM maps provide a “spatial imprint” to repre-
sent environmental gradients at unsampled locations
for which NCDC base station data do not exist. The

PRISM maps are combined with the output of a kriging
interpolation process to incorporate PRISM’s environ-
mental relationships into the final predictive maps.

(i) CI precipitation

The equation used to calculate daily input values is
simply expressed as the ratio of the daily weather ob-
servation to the long-term-average value for that
month:

Pratio � Pdaily�Pmonthly ,

where Pdaily is the daily base station NCDC value and
Pmonthly is the 30-yr monthly mean from PRISM at the
base station.

Ordinary kriging is then used to interpolate a gridded
surface of Pratio for a given day that visually resembles
the output of the interpolation-only method shown in
Fig. 3. The kriging output is subsequently multiplied by

FIG. 3. Prediction maps using the interpolation-only method to interpolate daily base station data for (a) precipitation, (b)
maximum temperatures, and (c) minimum temperatures: 26 Mar 2001.
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the PRISM grid to derive a map of predicted daily pre-
cipitation values (Fig. 5a):

Pdaily � Pinterpolated ratio � Pmonthly ,

where Pinterpolated ratio is the amount of precipitation
during the day relative to the monthly mean for that
location.

(ii) CI temperature

Maximum and minimum temperatures are computed
in a similar fashion as precipitation, but instead the
input values for a given day are calculated as the dif-
ference between the monthly mean (minimum or maxi-
mum) temperature and the observed daily value:

Tdifference � Tmonthly � Tdaily ,

where Tdaily is the daily NCDC base station value and
Tmonthly is the long-term monthly mean maximum or
minimum temperature at the base station location.
These values are input to the kriging model that inter-
polates a surface of difference values for the entire
state. This grid surface is subtracted from the PRISM
map of long-term monthly means to derive a map of
predicted daily minimum or maximum temperature val-
ues (Figs. 5b, 5c):

Tdaily � Tmonthly � Tinterpolated difference ,

where Tinterpolated difference is the kriging output of tem-
perature differences.

c. Accuracy assessment

Daily weather conditions of precipitation and mini-
mum and maximum temperatures were predictively
mapped using both methods over the 24-yr period
(1980–2003). For each day, 10% of the available base
stations were randomly withheld from the predictive
models to form an independent validation dataset. To
assess predictive accuracy, predicted values were com-
pared with observed values in the validation dataset for
a subset of days representing a seasonal range of con-
ditions over this period. Daily precipitation predictions
were assessed for 1 week (days 20–26) in each of the
wettest months of the year: December, January, Feb-
ruary, and March. For minimum and maximum tem-
peratures, the model was tested on 7 days per season
(days 20–26) or 4 weeks per year in the following
months: December, March, June, and September. Each
parameter was evaluated for 28 days per year, or 672
total days over the 24-yr period.

To address question 1, we compared predicted values
from each daily weather map over the 24-yr period to
the observed values in the validation dataset using

FIG. 4. Experimental exponential (solid line) and empirical
(dots) semivariograms for daily values of (top) precipitation,
(middle) maximum temperature, and (bottom) minimum tem-
perature on 26 Mar 2001.
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three statistics. First, the coefficient of determination
(r2) was calculated with linear regression to assess the
amount of variability in observed values accounted for
by the model. Second, mean absolute error (MAE) was
computed to determine overall magnitude of error:

MAE �
1
n �

i�1

n

|�Pi � Oi	|,

where n is the number of samples, Pi is the predicted
weather value, and Oi is the observed weather value.
Third, mean error (MER) was calculated to identify
tendencies of under- versus overprediction, or overall
directionality of error:

MER �
1
n �

i�1

n

�Pi � Oi	.

Positive and negative MER values indicate over- and
underprediction, respectively.

To address question 2, one-way analysis of variance

(ANOVA) was used for each weather parameter to
determine the degree to which MAE and MER differ
between months (the grouping factor). The replicates
within month were considered to be independent be-
cause they were randomly selected from a population
of possible sites for inclusion in the validation dataset.
To investigate question 3, we computed Spearman’s co-
efficient of rank correlation (rs) to examine whether
there is a monotonic relationship between the number
of input base stations and the MAE.

3. Results

a. Precipitation

1) INTERPOLATION ONLY

Regression analysis showed that the interpolation-
only approach predicted 59% of the variability in ob-
served daily values of precipitation with a slight ten-
dency to underestimate (MER � �0.04; Table 1).

FIG. 5. Prediction maps using the climate-imprint method to integrate PRISM with daily base station interpolation for (a)
precipitation, (b) maximum temperatures, and (c) minimum temperatures: 26 Mar 2001.
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MAE calculations indicated that daily precipitation
predictions were, on average, within �2.8 mm of ob-
served. ANOVA identified a significant difference in
MAE between months (F � 15; p 
 0.0001) (Fig. 6a).
The number of available input base stations varied
from day to day because of incomplete data, ranging
from 166 to 234. Testing of the Spearman’s correlation
coefficient showed a weak trend of reduced MAE with
more stations (rs � �0.08; p � 0.05).

2) CLIMATE IMPRINT

Regression analysis showed that the climate-imprint
precipitation model predicted 64% of the variability in
observed daily values with a slight tendency to overes-
timate (MER � 0.01; Table 1). MAE calculations indi-
cated that the model predicts daily precipitation, on
average, to within �2.5 mm of observed. Approxi-
mately two-thirds of the comparisons between the pre-
dictions and observations were within 1 mm, and about
93% of the predicted daily values were within 10 mm of
observed. In addition, ANOVA identified a significant
difference in MAE between months (F � 11.2; p 

0.0001). According to Spearman’s rank correlation co-
efficient, there is a weak monotonic relationship be-
tween MAE and number of stations, in the negative
direction (rs � �0.08; p � 0.05).

b. Temperature

1) INTERPOLATION ONLY

The maximum and minimum temperature interpola-
tion-only models predicted 85% and 79% of the varia-
tion in observed daily values, respectively (Table 1). On
average, maximum and minimum temperature are
slightly underpredicted (MER � �0.07 and �0.09;
Table 1). MAE calculations showed that maximum
temperature predictions of interpolation-only models
were, on average, �2.7°C of observed, and predicted
minimum temperatures were �2.2°C of observed.
ANOVA identified a significant difference in MAE be-
tween seasons for both maximum (F � 67; p 
 0.0001;
Fig. 6b) and minimum (F � 7.0; p 
 0.0001; Fig. 6c)
temperatures. Mean monthly absolute error values
for minimum temperatures varied less than those for
maximum temperatures. Because of incomplete data,

differences in the number of input base stations used
ranged from 131 to 197 for minimum temperature and
from 130 to 198 for maximum temperature. For maxi-
mum temperature, Spearman’s correlation coefficient

FIG. 6. Mean absolute error by month in daily estimations of (a)
precipitation, (b) maximum temperatures, and (c) minimum tem-
peratures for both interpolation-only and climate-imprint meth-
ods. Values are means with standard error bars.

TABLE 1. Performance comparison of IO and CI models for precipitation, maximum, and minimum temperatures.

r 2; p MAE MER

IO CI IO CI IO CI

Precipitation 0.59; 
0.0001 0.64; 
0.0001 2.8 mm 2.5 mm �0.04 0.01
Max temperature 0.85; 
0.0001 0.92; 
0.0001 2.7°C 2.0°C �0.07 �0.38
Min temperature 0.79; 
0.0001 0.89; 
0.0001 2.2°C 1.7°C �0.09 �0.41
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showed a weak monotonic relationship between MAE
and the number of stations, in the positive direction (rs

� 0.07; p � 0.07). For minimum temperature, the cor-
relation coefficient indicated no relationship (rs �
�0.02; p � 0.57).

2) CLIMATE IMPRINT

The climate-imprint models for maximum and mini-
mum temperatures predicted 92% and 89% of the
variation in observed daily values, respectively (Table
1). On average, maximum and minimum temperatures
were underpredicted (MER � �0.38 and �0.41; Table
1). The MAE showed that maximum temperature pre-
dictions were, on average, within �2.0°C of observed,
and predicted minimum temperatures were within
�1.7°C of observed. The distributions of absolute error
for both maximum and minimum temperatures were
similar; approximately one-third of the predicted tem-
peratures were accurate to within 1°C, and more than
93% were within 5°C of observed values.

ANOVA indicated that MAE differed between sea-
sons for both maximum (F � 14; p 
 0.0001) and mini-
mum temperatures (F � 4.0; p 
 0.01). Mean monthly
absolute error values for minimum temperatures varied
less than those for maximum temperatures. For both
temperature parameters, Spearman’s correlation coef-
ficient showed a weak monotonic relationship between
MAE and the number of stations, in the positive direc-
tion (maximum temperature: rs � 0.16; p 
 0.001; mini-
mum temperature: rs � 0.20; p 
 0.001).

4. Discussion and conclusions

The method that integrates long-term-average cli-
mate data with the interpolated base stations (climate
imprint) performed better than the interpolation-only
approach, predicting 5%–10% more variation in the
daily weather parameters. In comparison with the IO
method, the CI process increased the coefficient of de-
termination (r2) for maximum and minimum daily tem-
peratures from 0.85 to 0.92 and from 0.79 to 0.89, re-
spectively. Minimum temperature predictions experi-
enced the greatest overall improvement in accuracy
from the climate-imprint technique (�10%). Perfor-
mance of the climate-imprint precipitation method was
notably lower at 64% of the variation, but integration
of climate data moderately increased the predictive ac-
curacy of the interpolation-only approach from 59%.
This improvement in predictive accuracy translated to
noteworthy differences in mean absolute error as well:
the climate-imprint method was, on average, 0.5°–0.7°C
more accurate in predicted temperatures and 0.3 mm

more accurate for precipitation than the interpolation-
only method. These quantitative differences between
the output maps were visually evident, especially in re-
gions of variable terrain lacking base stations (Fig. 7).

These results are encouraging given the simplicity of
the climate-imprint method, which can be easily ap-
plied in a GIS environment. All that is necessary are
readily available maps of climate and a network of daily
weather conditions at point locations. Further updates
and improvements to NCDC and PRISM datasets
could increase the accuracy of the climate-imprint
method. The method’s readily available required ele-
ments allow for the reconstruction of daily weather
conditions over long time scales and allow the creation
of ongoing daily weather maps in near–real time.

The low density of base stations (1.9 stations per 1000
square kilometers) and the pronounced environmental
variability in California present a challenging test for
predictive mapping of daily weather conditions. The
result that both approaches, in general, predicted less
variation in precipitation than in temperature suggests
that precipitation may be more spatially variable than
temperature at the scale of the mapping process, which
is illustrated by the semivariograms (Fig. 4). Precipita-
tion patterns may also be more temporally dynamic
than temperature patterns, which could account for
much of the unexplained variation in precipitation. Dif-
ferences between NCDC precipitation data points re-
sulting from time of observation, snow–precipitation
conversions, and other measurement errors are likely
contributing additional variation that would be unpre-
dictable with either mapping approach. Despite a lower
correlation between observed and predicted precipita-
tion, the average climate-imprint prediction was within
�2.5 mm, with a slight tendency to overestimate (MER
� 0.01). Further evaluation of precipitation predictions
on the basis of precipitation occurrence, a binary cat-
egorical variable, is required to understand how accu-
rately the method predictively maps isolated events
versus dry areas.

The climate-imprint method predicted maximum and
minimum temperatures at a similar level of accuracy
(�2.0° and �1.7°C, respectively). These values are
similar to MAE for daily predictions of maximum and
minimum temperatures (�1.8° and �2.0°C) reported
for Daymet (Thornton et al. 1997). The slight tendency
for the climate-imprint method to underpredict tem-
perature (MER � �0.4) could bias some applications.
The result that minimum temperature was, on average,
0.3°C more accurate than maximum temperatures may
be due to higher accuracy of PRISM maps or lower
spatial variability than for maximum temperatures.
Minimum daily temperatures may also be less tempo-

1508 J O U R N A L O F A P P L I E D M E T E O R O L O G Y VOLUME 44



rally dynamic than maximum temperatures. In regions
outside of California, minimum temperatures could be
more spatially variable and prone to error resulting
from frost pockets, inversions, drainage winds, and
other factors.

The result that prediction errors differ among
months for all tests suggests that the model perfor-
mance varies seasonally. For the climate-imprint
method, March precipitation was, on average, approxi-
mately 0.5 mm lower, and January was about 0.5 mm
higher, than December and February. This result may
reflect differences among months in amounts of pre-
cipitation: March has the least precipitation of those in
the analysis and January has the most. Error values for
temperature methods also significantly differed be-
tween months, but the range of these differences was
small (
0.5°C). March exhibited the lowest MAE value
for both the climate-imprint and interpolation-only
methodology, and the error in the maximum tempera-
ture estimates was higher than the error in the mini-
mum temperatures for all four months. Accuracy dif-

ferences between months of the PRISM datasets may
also account for some of the variability reported by
ANOVA.

It is expected that an analysis with a systematic re-
duction in station number would eventually show an
increase in prediction error, and vice versa. It was sur-
prising that days with more base stations did not nec-
essarily yield less mean absolute error than days with
fewer points. For precipitation, the average prediction
error was increased slightly on days with fewer stations
(rs � �0.08), as expected. For temperatures, there was
no relationship or there was weak positive directional-
ity (for maximum temperature rs � 0.07; for minimum
temperature rs � �0.02). The lack of a strong relation-
ship between error and station number suggests that
the method’s performance is relatively stable and is not
dependent upon changes in station number from day to
day. A relatively narrow range of station numbers was
used in the study (130–234), which may partially ex-
plain why the expected pattern was not apparent. Al-
ternatively, the lack of relationship between the mag-

FIG. 7. (a) Locator map for large-scale comparison of interpolation-only and climate-imprint methods with base
stations for estimation of (b) daily precipitation in the north Coast Ranges and (c) maximum temperature in the
eastern Sierra Nevada: 26 Mar 2001.
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nitude of prediction errors and the number of monitor-
ing stations could be due to randomly changing
validation stations from day to day. Because stations
may also vary widely in difficulty to predict, the varia-
tion in error resulting from station numbers could be
obscured. The positive relationships for temperatures
could be linked with additional stations being located in
locations that are difficult to predict.

In conclusion, the integration of long-term-average
climate maps with point observations of daily weather
conditions can improve the accuracy of interpolated
maps by helping to account for the influence of varied
terrain and geographic features, such as coastal prox-
imity and orographic effects. Although the climate-
imprint methods may produce predictions with differ-
ent average errors by season, these differences were
small relative to the overall error in the models. More-
over, the climate-imprint method generally produces
consistent and stable results from day to day regardless
of the variation in the number of stations present in the
NCDC database. Some instability may occur during ex-
treme weather events, which produce highly variable
conditions (Parzybok 2004) that may not correspond
strongly to average climate. The new method presented
provides a simple yet effective approach for mapping
weather conditions—a challenging task in topographi-
cally variable regions. Testing the method across the
highly variable geographic regions of California did not
address regional differences in error, but the results
allow assessment of error in broad-scale applications.
This mapping approach could provide valuable data for
geographical research requiring spatially explicit maps
of daily weather conditions over broad scales.
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